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ABSTRACT 
In this paper we present a method for measuring the permittivity of dielectric materials up to very 

high temperatures, 1100°C. Enabling some type of materials to be measured beyond their melting 

point. The proposed method uses a freespace focused beam system. Therefore, it has no limitations 

on the measurement frequency range, except for any limitations to the antennas used in the test 

fixture. 

An improved numeric algorithm is proposed allowing the extraction of the permittivity correctly 

from thick, relative to the measurement frequency, samples without having to measure multiple 

samples with different thickness of the same material. The algorithm also supports de-embedding of 

the crucible material across temperature for measuring samples beyond melting point. 

INTRODUCTION 
The importance of measuring the properties of dielectric materials is becoming increasingly 

important with the higher operating frequencies of many modern radio systems, such as 5G and 6G. 

However, most commercially available systems for measuring permittivity, and permeability, are 

limited to room temperature measurements. For example, waveguide or resonator based systems 

do not provide a way to heat or cool the sample without effecting the measurement fixture itself. 

The proposed method in this paper uses a freespace focused beam system. This allows the sample to 

be heated, or cooled, across a very large temperature range without effecting the performance of 

the measurement system. 

TEST SETUP 
A free space focus beams system can be realised using a setup like the one shown in Figure 1. In this 

case the system includes two frequency extenders covering the frequency range 75-110GHz, two 

spot focus antennas, a Vector Network Analyser (VNA) compatible with the frequency extenders and 

a tube furnace capable of heating the sample up to 1100°C. 
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Figure 1 - Free space focused beam system with tube furnace 

A spot focus antenna is a horn antenna incorporating a dielectric lens to create a focused beam at 

some distance, the focal length. At the focal length the 10dB beam width is normally somewhere 

between 0.5” and 2”, enabling samples with a small diameter to be measured. 
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Figure 2 – Spot focus antenna 

As with most dielectric measurement systems a Vector Network Analyzer (VNA) is used. The 

measured S-parameters can then converted to complex permittivity using either the Nicolson-Ross-

Weir (NRW) algorithm, [2], or numerically using one of the algorithms proposed by James Baker-

Jarvis in [1].  

A tube furnace is also included in this test setup. The furnace allows precise heating of the sample 

whilst measuring the S-parameters. 

ALGORITHM 
A focused beam free space system requires samples sizes with a minimum diameter of three times 

the beamwidth (spot size) to avoid fringe effects. A spot size around 25mm is achievable with the 

horn antenna used when fitted with a dielectric lens. Hence, a sample diameter >75mm is required 

for accurate measurements. To ensure a sample of this size does not flex or bend in the fixture it 

does require a thickness of a millimetre or more depending on the type of material. For mmWave 

frequencies that means the sample thickness may be several wavelengths. 
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A sample thickness of more than one wavelength causes phase wrapping, i.e., ambiguous group 

delay through the sample. This translates into multiple solutions for the permittivity. This is a known 

issue with the Nicolson-Ross-Weir algorithm due to the infinite number of roots as explained below. 

However, looking at Equation 1 it is not obvious that the numeric iterative NIST algorithm also suffer 

from multiple solutions with thick samples. A novel approach to overcome this issue for isotropic 

materials for the NIST algorithm is described below. 

Nicolson-Ross-Weir algorithm 

The NRW algorithm provides a direct conversion from S-parameters to permittivity and 

permeability. However, it has one major drawback in that the term 𝑙𝑛
1

𝑇
  in the equation has an 

infinite number of roots since the imaginary part of it is 𝑗(𝜃 + 2𝜋𝑛) where 𝑛 = 0, ±1, ±2, …. For thin 

samples, with a thickness < 𝜆 at the measurement frequency, this is not an issue as 𝑛 = 0. For thick 

samples we must estimate the group delay through the sampled to identify the correct value of 𝑛. 

This can be done by measuring two identical samples with different thicknesses. Note, the thickness 

difference between the two samples needs to be  < 𝜆 to ensure a single value of 𝑛 can be identified. 

In cases where it is difficult, or not possible, to produce two samples with identical material 

properties the NRW algorithm becomes unsuitable for thick samples with unknown group delay, and 

an iterative algorithm offers a better option. 

NIST algorithm 

Two iterative algorithms were proposed in [1] by James Baker-Jarvis. One suitable for through 

measurements of S-parameters and the second one considering the use of a reflective plate behind 

the sample for a reflective measurement. 

The latter is limited to measuring permittivity or permeability as it only uses S11 for the 

measurement. It also requires the use of an electromagnetic reflective surface, e.g., a metal plate, 

fitted behind the sample. The use of a metal plate makes it difficult to use at high temperatures 

where the metal may become soft or its properties change.  

The through method has a number of advantages when measuring samples across temperature. 

a) It is possible to measure a full set of S-parameters. Hence, it is possible to extract both 

permittivity and permeability if required. 

b) It is possible to correct for any curvature in the sample by averaging S21 and S12  

c) Only S21 and S12 measurement is required to extract the permittivity. 

d) It does not require a reflective plate behind the sample. 

e) Very accurate calibration of the VNA can be completed. Either only through calibration if 

only S21 and S12 is required. Or Through, Reflect and Line (TRL) calibration in the case were a 

complete set of S-parameters is required. 

The relationship between S21 and S12 and the permittivity for a free space measurement system can 

be expressed as Equation 1, see [1] and [3]. 

𝑓(𝜀𝑟) = (1 − Γ2𝑇2)
𝑆21 + 𝑆12

2
− 𝑇(1 − Γ2) 

Equation 1 - Permittivity and S-parameter relationship 

https://www.nist.gov/
https://www.nist.gov/


 

4 
 

Where Γ is the reflection coefficient and the 𝑇 is the transmission coefficient, defined as: 

Γ =
√

𝜇𝑟
𝜀𝑟

− 1

√
𝜇𝑟
𝜀𝑟

+ 1

 

𝑇 = 𝑒−𝑗𝑘0𝑡√𝜇𝑟𝜀𝑟 

Equation 2 – Relation between reflection, transmission coefficients and permittivity and permeability 

Combining Equation 1 and Equation 2 we can solve the roots to Equation 1 from 𝑓(𝜀𝑟) = 0. This is a 

very difficult equation to solve analytically but it is straight forward to do numerically using the 

Newton-Raphson method. However, there are two issues with using Newton-Raphson when solving 

Equation 1 for 𝜀𝑟 in thick samples. 

a) Multiple roots – As discussed previously a thick sample will have multiple roots. 

b) Stability and Convergence – Newton-Raphson requires a starting value. If the chosen starting 

value is poorly selected, or the permittivity of the material is completely unknown, the 

solution maybe converge to the incorrect root or not converge at all. 

These two issues are independent and can be resolved separately. 

Stability and Convergence 

Several ways have been investigated in the literature to improve the stability and convergence of the 

Newton-Raphson algorithm. One of the most common ways is to introduce a damping factor 𝑎 to 

the iterative equation.  

𝑥𝑛+1 = 𝑥𝑛 + 𝑎
𝑓(𝑥)

𝑓′(𝑥)
 

 

With 𝑎 < 1 the convergence improves, however the smaller the value of 𝑎 the slower convergence 

is. One way of optimising 𝑎 is to used backtracking. If we consider |𝑓(𝑥𝑛+1)| < |𝑓(𝑥𝑛)| as a 

requirement for convergence, we can use the following algorithm to set 𝑎. 

Start N-R algorithm 
with a=1

Is |f(xn)|>|f(xn+1)|?
Calculate 

xn+1=xn+a*f(xn)/f  xn)
a=a/2

Calculate f(xn) and 
f(xn+1)

No

Yes

 

Figure 3 – Newton-Raphson with backtracking 

The introduction of back tracking ensures stability as the algorithm cannot diverge since we require 

𝑓(𝑥𝑛+1)| < |𝑓(𝑥𝑛)|. However, back tracking does not eliminate the problem of converging to an 

invalid root if the starting value of 𝜀𝑟 is chosen incorrectly. 
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Root convergence 

Due to the sample thickness a number of solutions to 𝑓(𝜀𝑟) = 0 are possible, and convergence is 

heavily dependent of the starting value of 𝜀𝑟 used for Newton-Raphson. To identify the correct root 

for convergence an algorithm suitable for non-magnetic isotropic materials was developed.  

As mentioned previously a thick, for the measurement frequency, sample will have a number of 

roots to 𝑓(𝜀𝑟). For the test setup described above the S-parameters were measured for an 8 mm 

thick piece of glass and the real part of 𝑓(𝜀𝑟) at 100 GHz for 𝜀𝑟
′  from 1 to 10 and 𝜀𝑟

′′ = 0 plotted in 

Figure 4. As can be seen there are twelve solutions to ℜ[𝑓(𝜀𝑟)]. In comparison a 1.6mm thick piece 

of FR4 only have two solutions to ℜ[𝑓(𝜀𝑟)].

 

Figure 4: 𝒇(𝜺𝒓) for 8mm thick float glass and 1.6mm thick FR4 PCB at 100GHz 

For an isotropic material the real part of 𝜀𝑟 is relatively stable across a small frequency range. Note, 

the imaginary part, representing the loss of the material, may increase substantially across the same 

frequency range. With these assumptions let us consider the deviation of the real part of 𝜀𝑟 across 

frequency and its relationship to the roots of ℜ[𝑓(𝜀𝑟)]. If plotting the starting guess of 𝜀𝑟  versus the 

converged 𝜀𝑟 across the measured frequency range we can see the spread in the converged 𝜀𝑟, as 

shown in Figure 5, versus the start guess of 𝜀𝑟. For this example, the graph shows the smallest 

deviation for the converged 𝜀𝑟 with a starting 𝜀𝑟 between 6 and 8, with a converged 𝜀𝑟 ≈ 6.7. This is 

in line with the data sheet suggested range for 𝜀𝑟 = 6.5 − 7.51. 

 
1 Permittivity quoted at 1MHz. 
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Figure 5: Deviation in converged r versus start r for 8 mm thick float glass at 22°C 

Based on these results and assumptions we can devise an algorithm that searches for a suitable 

starting guess for a given range and step size of 𝜀𝑟. The algorithm solves 𝑓(𝜀𝑟) = 0 for a set of start 

𝜀𝑟 defined across the whole frequency range being measured. It then calculates standard deviation 

of the real part of the converged roots, selects the root with the smallest deviation in the real part of 

𝜀𝑟 as the correct root, and uses this as the starting guess when calculation 𝜀𝑟.  

Solve using  N-R for 
all epsilons across all 

frequencies

Calculate standard 
deviation for 

converged epsilons

Find epsilon with 
minimum standard 

deviation

Return epsilon with 
minimum standard 

deviation 

Set search range for 
start epsilon (1-10), 

with a step size=0.25
 

Figure 6: Root search algorithm 

This algorithm: 

• Eliminates the need for multiple identical material samples of different thickness to 

determine the group delay. 

• If the permittivity of the material changes substantially with temperature the algorithm will 

search for and find the correct root at each given temperature. 

RESULTS 
Using the measurement method described and the algorithm developed the permittivity of float 

glass was measured up to and beyond the melting point (800°C). The results are shown Figure 7, as 

can be seen the real part of the glass increases from 6.7 at room temperature to 8.8 just before the 

melting point. Corresponding to a frequency response shift of more than 30%. 
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Over the same temperature range the change to the imaginary part is even greater going from 0.2 to 

1.4. Meaning the loss tangent, tan 𝛿, goes from 0.03 to 0.16. corresponding to an increase in loss 

with over 400%. 

  
a) Real permittivity b) Imaginary permittivity 

Figure 7: Permittivity of float glass from 22°C up to 800°C 

CONCLUSIONS 
Using an improved setup of the free space measurement technique for characterising the dielectric 

properties of materials we have shown it is possible to measure thick samples of dielectric materials 

up to very high temperatures accurately, all the way up to the melting point of the material.  

Furthermore, we have developed a novel algorithm for extracting the correct complex permittivity 

from thick samples of isotropic materials without the need for group delay estimation. Enabling the 

characterisation of materials at high frequencies without the need to use very small or thin samples. 

REFERENCES 
[1]  NIST Technical Note 1341, Transmission/Reflection and Short-Circuit Line 

Permittivity Measurements 

[2]  Nicolson-Ross-Weir method 

[3]  Focused beam methods, John W. Schultz. ISBN: 1480092851 

 

 

 

 

https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1341.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1341.pdf
https://en.wikipedia.org/wiki/Nicolson%E2%80%93Ross%E2%80%93Weir_method

	Dielectric material measurements at high temperature
	ABSTRACT
	INTRODUCTION
	TEST SETUP
	ALGORITHM
	Nicolson-Ross-Weir algorithm
	NIST algorithm
	Stability and Convergence
	Root convergence

	RESULTS
	CONCLUSIONS
	REFERENCES

