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A study of pole locations in four section filters begins with an explanation of the 

possible cross coupling configurations. Then the theory behind the synchronously 

tuned filter is derived and examples are given and studied. The input impedance is 

derived, and the circuit element values are calculated. User examples can be 

entered and analysed to further acquaint the operator with the effects of the pole 

locations on the filter's insertion loss, return loss, group delay and element value 

spread. The excel file in the proceedings allows the user to adjust sliders to alter all 

the filter parameters and observe the results. 

1.  INTRODUCTION 

A generalised four section filter would have five couplings from each node.  One to 

each of the other nodes, figure 1.1 show a simplification of this general case.  Any 

synchronously tuned filter – the coefficients of S21 are not complex – can be realised 

by the network shown in figure 1.2 
[1]

.  Any generalised filter can be realised by this 

network with the addition of diagonal cross couplings as in figure 1, but this is not 

necessarily the desired implementation.  Extracted poles may be desired, 

independent control of pole frequencies may be needed or physical constraints could 

dictate a particular realisation. The relationship of the cross-coupling signs and 

structures to the pole locations can be established. The bandpass theory is not 

examined in this paper because it requires root finding of degree 8 functions, and 

that is painful in Excel, this work is constrained to polynomials that can be rooted by 

the quartic formula. 

 

Figure 1.1. Generalised four section filter 



 

Figure 1.2 Symmetrical four section low-pass Prototype Network 

In the synchronously tuned case (K24=K15=0), there are three main possibilities for 

cross coupling.  If all the main line (green) couplings are considered positive, then 

k14 and k05 can be positive or negative.  If the signs of k23, k14 and k05 are all 

positive then a quadrupole is produced (self-equalisation); if they alternate in sign, 

then four transmission zeroes are produced (+j⍵1 and +j⍵2).  In the third case, i.e. 

Where two of the inverters have the same sign and the end one has the opposite 

sign then two transmission zeroes are produced along with a pair of real axis zeroes 

which can equalise the response. 

2.  FORMATION OF INPUT ADMITTANCE 

To study the symmetrical four-section filter (figure 1.2), the input impedance must be 

generated and then equations must be derived to calculate the circuit element values 

from this input impedance. In general: 

|𝑆12(𝑗𝜔)|2 =
1

1 + 𝜀2𝐶𝑛
2(𝜔)

 

Factors for an equiripple bandpass characteristic function, 𝐶𝑛(𝜔) have been 

established [2,3,4].  In the general case with a passband that extends from K to 1/K 

(K<1) these factors can be written in the following form: 

 

… 2.2 

 

The characteristic function is formed by taking the rational part of the product of 

these factors. 

𝐴 + 𝐵𝜔2 + 𝐶√(𝜔2 − 𝑘2)(𝜔2 − 1/𝑘2)

(1 − 𝑘4)(𝜔2 − 𝜔𝑖
2)

 

𝐴 = 2𝑘2 − 𝜔𝑖
2𝑘4 − 𝜔𝑖

2 𝐵 = 2𝜔𝑖
2𝑘2 − 𝑘4 − 1 𝐶 = ±2𝑘2√(𝜔𝑖

2 − 𝑘2)(𝜔𝑖
2 − 1/𝑘2) 



This general bandpass factor places a transmission zero at ±ωi, where ωi can be 

complex.  For a lowpass (symmetrical) function normalised to a cutoff frequency of 1 

rad/S, a factor:  

 

will place a zero at infinite frequency, and 

… 2.3 

 

will place a zero at ±ωi. 

Taking the rational part of the product of the factors in 2.2 forms the characteristic 

function.  Hence, for a generalised symmetrical four section lowpass characteristic 

function with poles located at  j1 and  j2 

𝐶𝑛(𝜔) = 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙  

 

 

let: 

… 2.4 

 

Then: 

 

 

 

Start by forming the characteristic function of an example lowpass filter: 

Cut off frequency: 1000MHz Return loss (rl): 20.0dB 

Pole location one: 0 + 2100j Pole location two: 0 + 2800j 

Impedance: 1Ω 

Calculate: 

ε = sqrt(1/(10(rl/10)-1))= 0.10050   ripple (dB) = 10.log10(1+ε2) = 0.0436 

Therefore, from equations 2.3 and 2.4 the characteristic function is given by: 

  𝐶𝑛(𝜔) =  
 7.82𝜔2 − 4.41 + 7.76𝜔√𝜔2 − 1

4.41 − 𝜔2
 .

14.6459𝜔2 − 7.84 + 14.646𝜔√𝜔2 − 1

7.84 − 𝜔2
 

=
 114.8𝜔4 − 126.05𝜔2 − 34.5744 + 113.59 𝜔2 (𝜔2 − 1 )  

𝜔4 − 12.25𝜔2 + 34.574
 

𝜔 + √𝜔2 − 1 

([
(2𝜔𝑖

2 − 1)𝜔2 − 𝜔1
2 + 2𝜔𝜔1√𝜔1

2 − 1√𝜔2 − 1

𝜔1
2 − 𝜔2

]) 

([
(2𝜔1

2 − 1)𝜔2 − 𝜔1
2 + 2𝜔𝜔1√𝜔1

2 − 1√𝜔2 − 1

𝜔1
2 − 𝜔2

] [
(2𝜔2

2 − 1)𝜔2 − 𝜔2
2 + 2𝜔𝜔2√𝜔2

2 − 1√𝜔2 − 1

𝜔2
2 − 𝜔2

]) 

𝐶𝑛(𝜔) =
𝐴𝜔4 + 𝐵𝜔2 + 𝐶

𝜔4 − (𝜔1
2 + 𝜔2

2)𝜔2 + 𝜔1
2𝜔2

2 =
𝐶𝑛𝑛𝑢𝑚(𝜔)

𝐶𝑛𝑑𝑒𝑛(𝜔)
 

𝐴 = 4𝜔1
2𝜔2

2 − 2𝜔1
2 − 2𝜔2

2 + 1 + 4𝜔1𝜔2√𝜔1
2 − 1√𝜔2

2 − 1 

𝐵 = −𝜔1
2(2𝜔2

2 − 1) − 𝜔2
2(2𝜔1

2 − 1) − 4𝜔1𝜔2√𝜔1
2 − 1√𝜔2

2 − 1 𝐶 = 𝜔1
2𝜔2

2 



 228.388𝜔4 − 239.638𝜔2 + 34.574  

𝜔4 − 12.25𝜔2 + 34.574
=

𝑁(𝜔)

𝐷(𝜔)
 

⌊𝑆11(𝜔)⌋2 =
ε2 𝑁2(𝜔)

𝐷2(𝜔) + ε2 𝑁2(𝜔)
 

… 2.5 

⌊𝑆12(𝜔)⌋2 =
𝐷2(𝑤)

𝐷2(𝜔) + ε2 𝑁2(𝜔)
 

Therefore, the denominator is: 

𝑑𝑒𝑛 ⌊𝑆𝑖𝑗(𝑗𝜔)⌋
2

= 527.88𝜔8 − 1130.688𝜔6 + 958.8𝜔4 − 1014.4536𝜔2 + 1207.4638 

= 𝜔8 − 2.141𝜔6 + 1.8163𝜔4 − 1.9217𝜔2 + 2.2874 

The points of perfect transmission can now be calculated. These occur when S11 is 

zero, i.e. they are the zeros of N(⍵). 

Using the quadratic equation the zeros of N(⍵) in ⍵2 are 0.8766 and 0.1727. And the 

roots in ⍵ are therefore 0.9362 and 0.4156, and these are the normalised points of 

perfect transmission. 

Next, we find the factors of the denominator polynomial using the quartic equation. 

The roots in ⍵2 are 0.2543 + j1.026336 and 1.32478 + j0.5393. The roots in ⍵2 are 

0.63367 + j0.80993 and 1.1737 + j0.22974.  Thus, the roots in p (j⍵) are 0.80993 + 

j0.63367 and 0.22974 + j1.1737. Next multiply out the left half plane roots in p. 

𝑑𝑒𝑛𝑆12(𝑝) = 𝑑𝑒𝑛𝑆11(𝑝) = 22.976(𝑝4 + 2.0796𝑝3 + 3.2326𝑝2 + 2.8032𝑝 + 1.5127) 

The multiplier is the square root of the leading coefficient of the denominator squared 

function. In this example 527.88. 

𝑑𝑒𝑛𝑆𝑖𝑗(𝑝) = 22.976𝑝4 + 47.77936𝑝3 + 74.2701𝑝2 + 64.405𝑝 + 34.755 

From equation 2.5: 

𝑛𝑢𝑚𝑆11(𝑝) = 22.958𝑝4 + 24.0845𝑝2 + 3.4755 

So, for analysis purposes we can form: 

𝑆11(𝑗𝜔) =
22.958𝜔4 − 24.0845𝜔2 + 3.4755

22.976𝜔4 − 47.77936𝜔3 − 74.2701𝜔2 + 64.405𝜔 + 34.755
 

And: 

𝑆12(𝑗𝜔) =
𝜔4 − 12.25𝜔2 + 34.5744

22.976𝜔4 − 47.77936𝜔3 − 74.2701𝜔2 + 64.405𝜔 + 34.755
 



Since: 

𝑍𝑖𝑛(𝑝) =
1 + 𝑆11(𝑝)

1 − 𝑆11(𝑝)
 

Then: 

𝑍𝑖𝑛(𝑝) =
45.929𝑝4 + 47.77936𝑝3 + 98.3546𝑝2 + 64.405𝑝 + 38.2299

0.02177𝑝4 + 47.77936𝑝3 + 50.1855𝑝2 + 64.405𝑝 + 31.2802
 

3.  CALCULATION OF ELEMENT VALUES 

As derived in the spreadsheet ‘Input Z’ tab, the input impedance of figure 1.2 is: 

 

If: 

 

 

Then by inspection: 

 

And: 

 

Since C1 and K05 are known, taking the ratio of the appropriate terms of the input 

impedance forms three equations in C2, K14, and K23: 

 

 

 

 

Substituting the last of these into the first and rearranging gives: 

so that the product C2K23 can be calculated. Rearranging the middle equation of the 

three to calculate C2: 
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𝑍𝑖𝑛(𝑃) =
𝑍𝑛𝑢𝑚4𝑃4 + 𝑍𝑛𝑢𝑚3𝑃3 + 𝑍𝑛𝑢𝑚2𝑃2 + 𝑍𝑛𝑢𝑚1𝑃 + 𝑍𝑛𝑢𝑚0

𝑍𝑑𝑒𝑛4𝑃4 + 𝑍𝑑𝑒𝑛3𝑃3 + 𝑍𝑑𝑒𝑛2𝑃2 + 𝑍𝑑𝑒𝑛1𝑃 + 𝑍𝑑𝑒𝑛0
 

𝐾05
2 =

𝑍𝑛𝑢𝑚4

𝑍𝑑𝑒𝑛4
 

𝐶1 =
𝑍𝑛𝑢𝑚4

𝑍𝑛𝑢𝑚3
 

√
𝑍𝑑𝑒𝑛0
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1
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𝐾05
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2 +
1
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√
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1

𝐶2
= 𝐶1 (

𝑍𝑛𝑢𝑚1

𝑍𝑛𝑢𝑚3
−

1

𝐶2
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K23 can now be calculated from C2K23. Finally rearrange the third equation to give 

K14 

 

Once the lowpass values have been calculated, the capacitors can be resonated to 

form a bandpass filter. If the passband of the filter goes from frequency k to 1/k, then 

a bandwidth scaling factor (𝛼) should be used, where: 

 

4.  EVALUATION OF DIFFERENT POLE DISTRIBUTIONS 

4.1 Two purely imaginary (real frequency) zeros 

 

 

 

Most commonly used, most selective 

Group delay variation increases as zeros go down towards the passband, band edge 

loss increases (proportional to group delay) 

 

1

𝐾14
= 𝐾23 (1 − 𝐶1𝐶2√

𝑍𝑛𝑢𝑚𝑜

𝑍𝑛𝑢𝑚4
) 

𝛼 =
𝐾

1 − 𝐾2
 



4.2 One purely imaginary (real frequency) and one purely real zero 

 

 

 

4.3 A quadrupole 

 

 

Zero frequency √(𝑰𝒎𝟐 − 𝑹𝒆𝟐) =  √𝟐𝟒𝟔𝟖𝟐 − 𝟏𝟒𝟒𝟓𝟐 = 2000.75MHz 



 

4.4 Two purely real zeros

 

 

 

 

 

Used where delay flatness (linear phase) response is paramount. 



Effects of return loss and finite Q 

 

Return loss = 25dB 

 

Return Loss = 20dB, Q = 10,000 



 

Return loss = 20dB, Q = 20 

5. Conclusions 

A spreadsheet has been produced that allows the user to investigate the effects of 

changing pole locations (and other parameters) on the characteristics of a finite loss 

filter.  
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